Archive for August, 2010

Proof pearl: A new foundation for Nominal Isabelle

Ack!  Sorry for the severe lack of updates lately.  The blog hasn’t died (I’m in the process of moving countries).  Anyway…

By Christian Urban and Brian Huffman, from ITP 2010, available from Christian Urban’s website:

Pitts et al introduced a beautiful theory about names and binding based on the notions of permutation and support. The engineering challenge is to smoothly adapt this theory to a theorem prover environment, in our case Isabelle/HOL. We present a formalisation of this work that differs from our earlier approach in two important respects: First, instead of representing permutations as lists of pairs of atoms, we now use a more abstract representation based on functions. Second, whereas the earlier work modeled different sorts of atoms using different types, we now introduce a unified atom type that includes all sorts of atoms. Interestingly, we allow swappings, that is permutations build from two atoms, to be ill-sorted. As a result of these design changes, we can iron out inconveniences for the user, considerably simplify proofs and also drastically reduce the amount of custom ML-code. Furthermore we can extend the capabilities of Nominal Isabelle to deal with variables that carry additional information. We end up with a pleasing and formalised theory of permutations and support, on which we can build an improved and more powerful version of Nominal Isabelle.

Advertisements

Hybrid: A Defintional Two Level Approach to Reasoning with Higher-Order Abstract Syntax

By Amy Felty and Alberto Monigliano, accepted in the Journal of Automated Reasoning 2010, available from Amy Felty’s website:

Combining higher-order abstract syntax and (co)-induction in a logical framework is well known to be problematic. We describe the theory and the practice of a tool called Hybrid, within Isabelle/HOL and Coq, which aims to address many of these difficulties. It allows object logics to be represented using higher-order abstract syntax, and reasoned about using tactical theorem proving and principles of (co)induction. Moreover, it is definitional, which guarantees consistency within a classical type theory. The idea is to have a de Bruijn representation of λ-terms providing a definitional layer that allows the user to represent object languages using higher-order abstract syntax, while offering tools for reasoning about them at the higher level. In this paper we describe how to use Hybrid in a multi-level reasoning fashion, similar in spirit to other systems such as Twelf and Abella. By explicitly referencing provability in a middle layer called a specification logic, we solve the problem of reasoning by (co)induction in the presence of non-stratifiable hypothetical judgments, which allow very elegant and succinct specifications of object logic inference rules. We first demonstrate the method on a simple example, formally proving type soundness (subject reduction) for a fragment of a pure functional language, using a minimal intuitionistic logic as the specification logic. We then prove an analogous result for a continuation-machine presentation of the operational semantics of the same language, encoded this time in an ordered linear logic that serves as the specification layer. This example demonstrates the ease with which we can incorporate new specification logics, and also illustrates a significantly more complex object logic whose encoding is elegantly expressed using features of the new specification logic.

Closed nominal rewriting and efficiently computable nominal algebra equality

By Maribel Fernandez and Murdoch J. Gabbay, from LFMTP 2010, available from Murdoch J. Gabbay’s website:

We analyse the relationship between nominal algebra and nominal rewriting, giving a new and concise presentation of equational deduction in nominal theories. With some new results, we characterise a subclass of equational theories for which nominal rewriting provides a complete procedure to check nominal algebra equality. This subclass includes specifications of lambda-calculus and first-order logic.


Posts

August 2010
M T W T F S S
« Jul   Oct »
 1
2345678
9101112131415
16171819202122
23242526272829
3031  
Advertisements