Resolving Inductive Definitions with Binders in Higher-Order Typed Functional Programming

By Matthew R. Lakin and Andrew M. Pitts, from ESOP 2009, available from Andrew M. Pitts’ website:

This paper studies inductive definitions involving binders, in which aliasing between free and bound names is permitted. Such aliasing occurs in informal specifications of operational semantics, but is excluded by the common representation of binding as meta-level λ-abstraction. Drawing upon ideas from functional logic programming, we represent such definitions with aliasing as recursively defined functions in a higher-order typed functional programming language that extends core ML with types for name-binding, a type of “semi-decidable propositions” and existential quantification for types with decidable equality. We show that the representation is sound and complete with respect to the language’s operational semantics, which combines the use of evaluation contexts with constraint programming. We also give a new and simple proof that the associated constraint problem is NP-complete.

0 Responses to “Resolving Inductive Definitions with Binders in Higher-Order Typed Functional Programming”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s





%d bloggers like this: