A logic for reasoning with higher-order abstract syntax

By Raymond McDowell and Dale Miller, from LICS 1997, available from Dale Miller’s website:

Logical frameworks based on intuitionistic or linear logics with higher-type quantification have been successfully used to give high-level, modular, and formal specifications of many important judgments in the area of programming languages and inference systems. Given such specifications, it is natural to consider proving properties about the specified systems in the framework: for example, given the specification of evaluation for a functional programming language, prove that the language is deterministic or that the subject-reduction theorem holds. One challenge in developing a framework for such reasoning is that higher-order abstract syntax (HOAS), an elegant and declarative treatment of object-level abstraction and substitution, is difficult to treat in proofs involving induction. In this paper, we present a meta-logic that can be used to reason about judgments coded using HOAS; this meta-logic is an extension of a simple intuitionistic logic that admits higher-order quantification over simply typed lambda-terms (key ingredients for HOAS) as well as induction and a notion of definition. The latter concept of a definition is a proof-theoretic device that allows certain theories to be treated as “closed” or as defining fixed points. The resulting meta-logic can specify various logical frameworks and a large range of judgments regarding programming languages and inference systems. We illustrate this point through examples, including the admissibility of cut for a simple logic and subject reduction, determinacy of evaluation, and the equivalence of SOS and natural semantics presentations of evaluation for a simple functional programming language.

0 Responses to “A logic for reasoning with higher-order abstract syntax”



  1. Leave a Comment

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s





%d bloggers like this: